Partitioning Hypergraphs in Scientific Computing Applications through Vertex Separators on Graphs
نویسندگان
چکیده
The modeling flexibility provided by hypergraphs has drawn a lot of interest from the combinatorial scientific community, leading to novel models and algorithms, their applications, and development of associated tools. Hypergraphs are now a standard tool in combinatorial scientific computing. The modeling flexibility of hypergraphs however, comes at a cost: algorithms on hypergraphs are inherently more complicated than those on graphs, which sometimes translates to nontrivial increases in processing times. Neither the modeling flexibility of hypergraphs, nor the runtime efficiency of graph algorithms can be overlooked. Therefore, the new research thrust should be how to cleverly trade-off between the two. This work addresses one method for this trade-off by solving the hypergraph partitioning problem by finding vertex separators on graphs. Specifically, we investigate how to solve the hypergraph partitioning problem by seeking a vertex separator on its net intersection graph (NIG), where each net of the hypergraph is represented by a vertex, and two vertices share an edge if their nets have a common vertex. We propose a vertex-weighting scheme to attain good node-balanced hypergraphs, since the NIG model cannot preserve node balancing information. Vertex-removal and vertex-splitting techniques are described to optimize cutnet and connectivity metrics, respectively, under the recursive bipartitioning paradigm. We also developed implementations of our proposed hypergraph partitioning formulations by adopting and modifying a state-of-the-art graph partitioning by vertex separator tool onmetis. Experiments conducted on a large collection of sparse matrices demonstrate the effectiveness of our proposed techniques.
منابع مشابه
Hypergraph Partitioning through Vertex Separators on Graphs
The modeling flexibility provided by hypergraphs has drawn a lot of interest from the combinatorial scientific community, leading to novel models and algorithms, their applications, and development of associated tools. Hypergraphs are now a standard tool in combinatorial scientific computing. The modeling flexibility of hypergraphs however, comes at a cost: algorithms on hypergraphs are inheren...
متن کاملGraph Partitioning Algorithms with Applications to Scientific Computing Graph Partitioning Algorithms
Identifying the parallelism in a problem by partitioning its data and tasks among the processors of a parallel computer is a fundamental issue in parallel computing. This problem can be modeled as a graph partitioning problem in which the vertices of a graph are divided into a speciied number of subsets such that few edges join two vertices in diierent subsets. Several new graph partitioning al...
متن کاملA Serial Multilevel Hypergraph Partitioning Algorithm
The graph partitioning problem has many applications in scientific computing such as computer aided design, data mining, image compression and other applications with sparse-matrix vector multiplications as a kernel operation. In many cases it is advantageous to use hypergraphs as they, compared to graphs, have a more general structure and can be used to model more complex relationships between...
متن کاملRelaxation-Based Coarsening for Multilevel Hypergraph Partitioning
Multilevel partitioning methods that are inspired by principles of multiscaling are the most powerful practical hypergraph partitioning solvers. Hypergraph partitioning has many applications in disciplines ranging from scientific computing to data science. In this paper we introduce the concept of algebraic distance on hypergraphs and demonstrate its use as an algorithmic component in the coars...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012